8-axis Position Controller for RCP2/RCP3/RCP4/RCP5/RCA/RCA2/RCD
 6-axis Position Controller with PLC Function for RCP2/RCP3/RCP4/RCP5/RCA/RCA2/RCD MSEP-LC

MSEP Features

1

Added PLC function

MSEP-LC

Operating the actuator and controlling the ON/OFF of I/O (input/output) signals using a ladder logic program is now possible. If your equipment is small enough, the MSEP-LC is all you need to control it. If your equipment is larger in size, you can still use the MSEP-LC to perform distributed control for each process to reduce the load of the main PLC. The MSEP-LC also makes your program simpler and troubleshooting easier.

Supporting actuators with the battery-less absolute encoder

MSEP-LC

Features of actuators with the battery-less absolute encoder

1 Home return is no longer necessary, so these actuators start and restart quicker than incremental actuators to begin working right away. They are also free from problems relating to home return, such as position shift.

2 Compared to standard absolute actuators, no battery is required, which results in the following benefits:

- No need to purchase or replace batteries

No need to control the stocks and replacement timing of batteries

- No need to make adjustment (absolute reset) normally required after battery replacement

RoboCylinder with the battery-less absolute encoder
RCP5

2

MSEP-LC

3
 Supporting the PowerCon (high-output driver) and Micro Cylinder MSEP-LC MSEP-C

When the PowerCon (newly developed high-output driver) is installed and combined with the RCP5 or RCP4, high performance is realized as indicated by the maximum speed of 1.5 times faster than that of conventional models and payload of more than double.
Since the super-compact MicroCylinders are also supported, you have a greater range of actuator variations from small to large - to choose from.

Choice of 6 boards to install

1 Pulse motor board
2 Pulse motor board for battery-less absolute specification
3 PowerCon (pulse high-output motor) board
NEW 4 PowerCon board for battery-less absolute specification
5 24VAC servo motor board
NEW 6 Micro Cylinder (BLDC servo motor) board

* Boards 3 and 4 permit operation of only one axis per board.

Supporting field networks

MSEP-LC
DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, EtherCAT, EtherNet/IP and PROFINET-IO are directly accessible.

Features of the network specification
- 256 positioning points per axis
- Numerically specify the target position or speed to move to
- Checking the current position in real time

Devicei'et	
Compoilet	CC-Link
Etheri'et/IP	Ether CAT ${ }^{*}{ }^{*}$
$\frac{\text { PROPTM }}{}$	

LC-LADDER

LC-LADDER is a ladder supporting software application designed for creating, monitoring and debugging ladder programs via simple operations. You can create programs to turn on or off I/O signal or to operate the actuator connected to the controller, monitor programs, perform simulations and execute debugging.

1

Creating programs

Programs can be created using 27 basic commands (contact commands, output commands, etc.), and 53 advanced commands (data comparison, arithmetic computation, logic operation, etc.).

Monitoring

The status of a program being executed can be checked via various functions.

Functions
Monitoring registration list $>$ You can check the status (current value) of a memory registered to the list at any time.

Memory batch display You can display the entire bit memory and word memory.

Current memory value change

The current bit memory or word memory value can be reset or changed to a specified value.

Debugging function

You can run a program based on a specified condition and check the operation of the program.

Functions

Stop step specification
Step execution

Programs can be stopped at the specified step.
You can run a program for one step at a time.

You can check an execution of a program (perform a test run) on a computer without actually running the program on the controller.

Example Two-Point Round-Trip Ladder Program

This program moves the slider forward (position no.0) and back (position no. 1).

Rear panel positioning system

Shifted work parts are aligned by the "push motion" of the RoboCylinder as they enter the machining stage for automotive rear panels. One controller can handle multiple axes, so wiring is easy.

Transferring work parts between machining systems

Work parts can be transferred between systems without using a dedicated PLC.

Palletizing system

Should the system halt due to an emergency stop, etc., it can resume operation right away thanks to the battery-less absolute encoder.

Positioning on an automotive manufacturing line

In the case of a large-scale line, implementing distributed control of each process and connecting to the host controller via a field network reduces the control load of the host controller.

Controller Models

MSEP Controller Models

Slot Contents

(1)The MSEP-C contains 4 slots.

The MSEP-LC contains 3 slots.

(2) Code entry method for each slot

Slot contents

(1) Depending on actuator type, 1 slot may be connectable to either 1 or 2 axes.

Connectable axes per slot	Actuator type
1 axis	RCP5 (high-output mode enabled), RCP4 (high-output mode enabled)
2 axes	RCP5 (high-output mode disabled), RCP4 (high-output mode disabled) RCP3, RCP2, RCA2, RCA, RCD

(2) If only one axis is connected per slot, the code for the second axis / bottom connector is set to "N ".
(3) E nter "T" into the option field if using the RCP5/RCP4 in high-output mode.

■ Slot entry examples

See the following page for example axis combinations.

Actuator Combination Examples_MSEP series

Combination Examples

Example Basic MSEP Combinations

The table below provides example combinations for MSEP-C/LC boards. \quad Note: The MSEP-LC can only use slots 0 through 2.

View of connected axes	Connected axis types	Number of axes
	Axis 1: RCP5-SA6C-WA-42P \square Axis 2: RCP5-RA4C-WA-35P \square	2
	Axis 1: RCP5-SA6C-WA-42P \square Axis 2: RCP5-RA4C-WA-35P \square Axis 3: RCA2-TCA4NA-I-20I \qquad	3
	Axis 1: RCP5-SA4C-WA-35P \qquad Axis 2: RCP5-SA4C-WA-35P \qquad Axis 3: RCP5-RA4C-WA-35P \qquad Axis 4: RCP5-RA4C-WA-35P \qquad	4
	Axis 1: RCP5-SA4C-WA-35P \qquad Axis 2: RCP5-SA4C-WA-35P \qquad Axis 3: RCA2-TCA4NA-I-20 AC servo/absolute pos. Axis 4: RCD-RA1D-I-3D \square	4
	Axis 1: RCP5-SA6C-WA-42P \qquad Axis 2: RCP5-RA4C-WA-35P Pulse/battery-less abs. Axis 3: RCP5-RA4C-WA-35P \qquad Axis 4: RCA2-TCA4NA-I-20 AC servo/absolute pos. Axis 5: RCD-RA1D-I-3D DC servo/incremental	5
	Axes 1-2: RCP5-RA4C-WA-35P \qquad Axes 3-4: RCA2-TCA4NA-I-20 AC servo/incremental Axes 5-6: RCD-RA1D-I-3D DC servo/incremental	6
	Axes 1-7: RCP5-RA4C-WA-35P Pulse/battery-less abs.	7
	Axes 1-2: RCP5-RA4C-WA-35P \square Axes 3-4: RCA2-TCA4NA-I-20 AC servo/absolute pos. Axes 5-8: RCD-RA1D-I-3D DC servo/incremental	8

Note: The RCD series does not support absolute positioning,
Model
Bottom connector Top connector
Top connector
MSEP-LC-2-42PWAIT-N-35PWAIT-N-NP-2-0
Axis no

MSEP-LC-3-42PWAI-35PWAI-20SA-N-NP-2-0-ABB
Slot 0 Slot 1

MSEP-C-4-35PWAIT-N-35PWAIT-N-
Slot 0
Slot 1
35PWAIT-N-35PWAIT-N-NP-2-0
Slot 2
Slot 3

MSEP-C-4-35PWAIT-N-35PWAI-N
Slot 0 Slot 1
20SA-N-3DI-N-NP-2-0-ABB
Slot 2 Slot 3

MSEP-C-5-42PWAIT-N-
Slot 0
35PWAI-35PWAI-20SA-N-3DI-N-NP-2-0-ABB
Slot $1 \quad$ Slot 2 Slot 3

MSEP-C-6-35PWAI-35PWAI-
Slot 0
20I-20I-3DI-3DI-NP-2-0
Slot 1 Slot 2

MSEP-C-7-35PWAI-35PWAI-35PWAI-35PWAI-

> Slot 0

35PWAI-35PWAI-35PWAI-N-NP-2-0
Slot $2<{ }_{\text {Slot } 3}^{2}$

MSEP-C-8-35PWAI-35PWAI-20SA-20SA-
Slot 0 Slot 1
3DI-3DI-3DI-3DI-NP-2-0-ABB
${ }_{\text {Slot } 2}^{\text {Slot } 3}$

Standard

Price Chart

Standard Price Chart

The standard MSEP controller price is built from the base model price (table 1 below) with prices added depending on slot types (table 2), absolute positioning quantity (table 3), absolute backup box quantity (table 4), I/0 type (table 5), and expanded I/O type (table 6).

1 Base price by model

Select between the standard controller (MSEP-C) or controller with PLC function (MSEP-LC).

2 Prices by slot type

Add the price for the desired slot types designated in slots 0 through 3.

3 Prices by absolute
position quantity
Add the price for the desired number of axes you wish to operate via absolute positioning.

*Add the motor number to the empty squares (\square) above.

4 Absolute backup box quantity

Add the price for the desired number of axes to install a data backup battery (model ABB) on for absolute data.

5 I/O type

Select the controller I/O type. (Only "NP" can be selected for controllers with PLC function.)

6 Expanded I/O type

Select the controller's expanded I/O type. (Not used for standard-model controllers.)

4	
Absolute backup box quantity	
Axes	Price
1	
2	
3	
4	
5	
6	
7	
8	

5		
H	I/O type (Only "NP" can be selected for controllers with PLC function)	
Type	Model	Price
PIC (NAN) specification	NP	
PIS (PAP) specification	PR	
DeviceNet specification	DG	
CC-Link specification	CC	
PROFIBUS-DP specification	PR	
CompoNet specification	CR	
EtherNet/IP specification specification	EP	
PROFINET-IO specification	FRT	

System Configuration_MSEP ${ }_{\text {series }}$

System

C onfiguration

System Configuration Map

Teaching Pendant
(See P24)
Model TB-01-C (*)
PC comp
(See P24)
RS232 connection version
Model RCM-101-MW
USB connection version
Model RCM-101-USB

(*) TB-01-C
coming soon with CE conformity.

Absolute battery box
(See P24)
Model MSEP-ABB
Replacement battery
(See P24)
Model AB-7

* If the absolute position encoder specification is selected as a controller unit, the absolute data backup battery is included. (See P23 for dimensions)

Control Method by Controller Type

Type	External view	1 Controle methods	No. of control axes		2 PIO controlled motion mode	Field network contro motion mode
			Using high-output driver	Using standard driver		
MSEP-C		Positioner function	4	8	\bigcirc	\bigcirc
MSEP-LC		$1 / 0$ control (sequence control) + Positioner function	3	6	-	(*)

* If using the MSEP-LC in a field network, ladder program-based data transfer and axis operation is required.

1 Control Methods

The MSEP-C controller itself has no sequencing functionality, so the positioner accepts movement positioning and other commands from a higher-level PLC to conduct operations.
The MSEP-LC executes a ladder program inside the controller, allowing it to communicate with external devices via I/O to operate axes (positional operation).

2 PIO Controlled Motion Mode

This mode allows external devices to move actuators based on an ON/OFF signal assigned to the PIO.
Six different types of PIO-assigned signal patterns can be selected and used (see table below).

* Not available with the MSEP-LC.

Motion Mode No.		0		1		2		3	4	5
Motion Mode Type		Standard 2-position motion		Speed change during movement		Position data change		2-input/ 3-position motion	3-input/ 3-position motion	Continuous cycle operation
Feature		2-position motion		2-position motion		2-position motion		3 -position motion	3 -position motion	2-position continuous motion
		Push		Push		Push		Push	Push	Push
				Speed change during movement		Travel position data change		-	-	-
Solenoid configurations		Single	Double	Single	Double	Single	Double	-	-	-
Input	0	Motion signal	Motion signal 1	Motion signal	Motion signal 1	Motion signal	Motion signal 1	Motion signal 1	Retract motion signal	Continuous motion signal
	1	Pause signal	Motion signal 2	Pause signal	Motion signal 2	Pause signal	Motion signal 2	Motion signal 2	Extend motion signal	Pause signal
	2	Reset signal		Speed change signal (Reset signal)		Target position change signal (Reset signal)		Reset signal	Intermediate point motion command signal (Reset signal)	Reset signal
	3	/Servo-ON signal		/Servo-ON signal		/Servo-ON signal		/Servo-ON signal	/Servo-ON signal	/Servo-ON signal
Output	0	Retract motion output signal		Retract motion output signal		Retract motion output signal		Retract motion output signal	Retract motion output signal	Retract motion output signal
	1	Extend motion output signal		Extend motion output signal		Extend motion output signal		Extend motion output signal	Extend motion output signal	Extend motion output signal
	2	Homing complete signal/ Servo-ON output signal		Homing complete signal/ Servo-ON output signal		Homing complete signal/ Servo-ON output signal		Intermediate point position output signal	Intermediate point position output signal	Homing complete signal/ Servo-ON output signal
	3	Alarm output signal/ Servo-ON output signal		Alarm output signal/ Servo-ON output signal		Alarm output signal/ Servo-ON output signal		Alarm output signal/ Servo-ON output signal	Alarm output signal/ Servo-ON output signal	Alarm output signal/ Servo-ON output signal

[^0]
3 Field Network Control Motion Mode

There are five operation modes to choose from when using the MSEP-C over a field network.
Data required for operation (target position, velocity, acceleration, push current, etc.) is written by a PLC or such connected to a higher-level device into a defined address. If operating the MSEP-LC via a field network, data required for axis operation is transferred via ladder program, and axis operation is conducted based on this ladder program motion command.

* Ladder programming is required for MSEP-LC axis operations.

Motion pattern (*1)	Description	Outline		
Positioner $1 /$ Simple numerical mode	Positioner 1 mode is programmable up to 256 positions of data to designate the stop position. The simple numerical control allows designating the target position numerically. They both have the capability of monitoring the current position.	PLC		Actuator
Direct numerical control mode	This mode allows designating the target position, velocity, acceleration, and current parameters for pushing. Also, it is capable of monitoring the current position, real-time velocity, and the electric current command value.	PLC Target position, Positioning width, Velocity, Acceleration/Deceleration Pushing percentage, Control signal Current position Current value (Designated value) Current velocity (Designated value) Alarm code, Status signal		Actuator
Positioner 2 mode	Positioner 2 mode is programmable up to 256 positions of data to designate stop positions, and this mode does not allow monitoring of the current position. This mode has less in/out data transfer volume than the positioner 1 mode.	PLC Target position number Control signal End position number Status signal		Actuator
Positioner 3 mode	Positioner 3 mode is programmable up to 256 positions of data to designate stop positions, and this mode does not allow monitoring of the current position. This mode has less in/out data transfer volume from the positioner 2 mode, and operates under minimum number of signals..	PLC Target position number Control signal End position number Status signal		Actuator
SEP I/O	This mode allows the same functions with the field network as the PIO controlled motion mode 0 to 5 as described in the previous page.	Please refer to th	PIO controlled motion mode.	

(*1) For MSEP-C, only the positioner 3 mode and the SEP I/O mode are available with CompoNet.

Operation Methods

How to Operate MSEP-C

PIO Specification

Input position data to the MSEP-C and specify a desired position number via PIO from the host PLC to operate the actuator.

Position data

Actuator

Tools required for setting

1 Teaching pendant (\rightarrow Refer to P. 24)
2 PC compatible software (\rightarrow Refer to P. 24)

* You only need either 1 or 2 to complete all necessary settings.

Field Network Specification

1 As with the PIO specification, input position data to the MSEP and specify a desired position number via a field network from the PLC to operate the actuator.

The PLC sends numerical position, speed and other data via a field network to operate the actuator.

Positioning complete signal Completed position number Current position

Position data

Actuator

How to Operate MSEP-LC

PIO Specification

The MSEP-LC runs a ladder logic program internally to operate the axes and control the PIO I/O signals. The axes can be operated either by using position data or specifying coordinates directly.

Tools required for setting

1 Teaching pendant (\rightarrow Refer to P. 24)
2 PC compatible software (\rightarrow Refer to P. 24)
3 Gateway parameter setting tool
4 Ladder logic support software (\rightarrow Refer to P. 3)

* You only need either [1] or 2 to complete all the necessary settings.
3 comes with the PC compatible software.
44 is downloadable from our website.

Position data

Ladder logic program

Field Network Specification

The MSEP-LC runs a ladder logic program internally to operate the axes and control I/O signals via a network.
The axes can be operated either by using position data or specifying coordinates directly.

Tools required for setting

1 Teaching pendant (\rightarrow Refer to P. 24)
2 PC compatible software (\rightarrow Refer to P. 24)
3 Gateway parameter setting tool
4 Ladder logic support software (\rightarrow Refer to P. 3)

* You only need either 11 or 2 to complete all the necessary settings.
3 comes with the PC compatible software. 44 is downloadable from our website.

Peripheral
equipment

Ladder logic program

MSEP-LC Ladder Program Specifications

The MSEP-LC's I/O control functionality allows you to run ladder programs to control input/output signals and operate axes connected to the controller. Ladder programming specifications are outlined below.

1
 Memory types and sizes

The sizes defined in the table below can be used in programming.

Program contents	4K steps	
	Input (X)	16 points / 32 points
	Output (Y)	16 points / 32 points
	Internal relays (M)	3,072 points
	Special relays (SM)	128 points
	Data registers (D)	64 words
	Special registers (SD)	32 words
	Timer (T), counter (C)	32 points each
	Index register (IX)	2 points
	Labels (L)	33 points

2 Basic commands

There are a total of 27 basic commands, covering contact points, output, and other commands.

Type	Command		Symbol	Process	Steps	
Contact point commands	LD	S	-\|	-	a contact	2
	LDN	5	-1/1-	b contact	2	
	OR	S	$4 \stackrel{+}{ }$	a contact	2	
	ORN	S	니 / ${ }^{\text {+ }}$	b contact	2	
	AND	S	-1 1-	a contact	2	
	ANDN	S	-1/1-	b contact	2	
	LDP	S	-। $\uparrow 1-$	Trigger on rise	2	
	LDNP	S	-\| $\downarrow 1-$	Trigger on fall	2	
	ORP	S	$4 \uparrow \vdash$	Trigger on rise	2	
	ORNP	S	니 +	Trigger on fall	2	
	ANDP	S	-\| 1 -	Trigger on rise	2	
	ANDNP	S	-\| $\downarrow 1-$	Trigger on fall	2	
Combination commands	OR-BLK		-	OR block processing	1	
	AND-BLK		-	AND block processing	1	
	M-PUSH		-	Write to memory	1	
	M-READ		-	Load from memory	1	
	M-POP		-	Load from memory	1	
Output commands	OUT	D	-()-	Coil output	2	
	OUT	T parameter	-()-	Timer output	3	
	OUT	C parameter	-()-	Counter output	3	
	SET	D	-[]-	Set OM	2	
	RST	D	-[]-	Reset OM	2	
	PLS	D	-[]-	Output pulse	2	
	PLSN	D	-[]-	Output pulse OFF	2	
	SFT	D	-[]-	Bit shift	2	
End commands	END		-[]-	End program	1	
	ENDS		-[]-	End main routine	1	

3 Applied commands

There are a total of 53 applied commands, covering data comparison, numerical functions, and more.

Type	Command				Symbol		Process	$\frac{\text { Steps }}{3}$
Data compare	S1 = S2				-[]-	Compare and pass if S1=S2	
	S1 > S2				-[]-	Compare and pass if S1>S2	3
	S1>=S2				-[]-	Compare and pass if S1>=S2	3
	S1 < S2				-[]-	Compare and pass if S1<S2	3
	S1 < $=$ S2				-[]-	Compare and pass if $\mathrm{S} 1<=\mathrm{S} 2$	3
	S1 <> S2				-[]-	Compare and pass if S1\#S2	3
Numerical operations	+	S	D		-[]-	Store S+D (BIN) in D	3
	+	S1	S2	D	-[]-	Store S1+S2 (BIN) in D	4
	-	S	D		-[]-	Store D-S (BIN) in D	3
	-	S1	S2	D	-[]-	Store S1-S2 (BIN) in D	4
	*	S1	S2	D	-[]-	Store S1×S2 (BIN) in D	4
	-	S1	S2	D	-[]-	Store S1 \div S2 (BIN) in D	4
	B+	S	D		-[1-	Store S+D (BCD) in D	3
	B+	S1	S2	D	-[]-	Store S1+S2 (BCD) in D	4
	B-	S	D		-[]-	Store D-S (BCD) in D	3
	B-	S1	S2	D	-[]-	Store S1-S2 (BCD) in D	4
	B*	S1	S2	D	-[]-	Store S1×S2 (BCD) in D	4
	B/	S1	S2	D	-[]-	Store S1 - S2 (BCD) in D	4
	INC	D			-[]-	Increment	2
	DEC	D			-[]-	Decrement	2
BCD/BIN conversion	BCD	S	D		-[]-	Convert to BCD	3
	BIN	S	D		-[]-	Convert to BIN	3
Transfer	MOV	S	D		-[]-	Move S to D	3
	MOVN	S	D		-[-	Move S to D, inverting all bits	3
	MCPY	S	D	n	-[-	Move the value n locations after S to n locations after D	4
	MSET	S	D	n	-[]-	Move S to n locations after D	4
	XCHG	D1	D2		-[]-	Exchange bit data between D1 and D2	3
Branching	JE	S			-[]-	Jump to L if conditions pass	2
	JMP	L			-[1-	Jump to L with no conditions	2
	CALL	L			-[]-	Execute subroutine designated in L	2
	RET				-[]-	Return from subroutine	1
Logical operations	LAND	S	D		-[]-	Store result of S/D AND operation in D	3
	LAND	S1	S2	D	-[]-	Store result of S1/S2 AND operation in D	4
	LOR	S	D		-[]-	Store result of S/D OR operation in D	3
	LOR	S1	S2	D	-[]-	Store result of S1/S2 OR operation in D	4
	LXOR	S	D		-[]-	Store result of S/D XOR operation in D	3
	LXOR	S1	S2	D	-[]-	Store result of S1/S2 XOR operation in D	4
	LXNR	S	D		-[]-	Store result of S/D NOR operation in D	3
	LXNR	S1	S2	D	-[]-	Store result of S1/S2 NOR operation in D	4
	NEG	D			-[]-	Invert sign	2
Rotation	ROR	D	n		-[]-	Rotate D n bits right, ignoring carry flag	3
	RCR	D	n		-[]-	Rotate D n bits right, including carry flag	3
	ROL	D	n		-[]-	Rotate D n bits left, ignoring carry flag	3
	RCL	D	n		-[]-	Rotate D n bits left, including carry flag	3
Shift	SHR	D	n		-[]-	Shift D n bits right	3
	SHL	D	n		-[]-	Shift D n bits left	3
	BSHR	D	n		-[1-	Shift location n bits after D 1 bit right	3
	BSHL	D	n		-[]-	Shift location n bits after D 1 bit left	3
	WSHR	D	n		-[]-	Shift value n locations after D 1 location right	3
	WSHL	D	n		-[]-	Shift value n locations after D 1 location left	3
Data processing	SUM	S	D		-[]-	Store no. of ON bits in S (16-bit data) in D	3
	DECO	S	D	n	-[]-	Decode lowest n bits of S and store n bits of D in 2 bits from D	4
	ENCO	S	D	n	-[]-	Encode value 2 bits from S and store in D	4
	BSET	D	n		-[]-	Set bit n of D	3
	BRST	D	n		-[]-	Reset bit n of D	3
	DDV	S	D	n	-[]-	Store lower n places of S to lower 4 bits n locations from D	4
	DCV	S	D	n	-[]-	Store lower 4 bits n locations from S in D	4
FIFO	FIFW	S	D		-[]-	Write to FIFO table	3
	FIFR	D1	D2		-[]-	Read from FIFO table	3
Loops	FOR	S			-[]-	Execute FOR-NEXT loop n times	2
	NEXT				-[]-		1
	BREAK				-[]-	Execute step following NEXT	1
Carry flag	STC				-[]-	Set carry flag contact point	1
	CLC				-[]-	Reset carry flag contact point	1
DFC command	DFC	fcn	S1	S2	-[]-	Call DFC command	4

Components Names

1

Caution: With the high-output setting specification (PowerCon), only one axis can be connected per slot.

Descriptions of the components

Motor-encoder connectors for the actuator connection

 Connect motor-encoder cable to the actuator2 Connector for the absolute data backup battery Connect the absolute data backup battery if the controller has the absolute position encoder specification
Connector for the external brake input
The connector to input a signal to release the brake for the actuator externally.
Connector for the emergency stop input for power source shut-off
The emergency stop input connector to connect in/output terminal of the external relay of the motor drive shut-off and each driver slot (*1).
Information card for configuration of the connecting axes
The information card contains information regarding the configuration of the controller axes which is removable to examine the contents.
$6 \quad+24 \mathrm{~V}$ source input connector
The main power source connector for the controller: Motor drive source shut-down is possible while restoring the power source for the controller unit in case of an emergency shut-down; This is because the terminals for the power source of the motor and the controller are separate.
7 Fan unit
Easily replaceable fan unit. (Replacement fan unit: Model MSEP-FU)
8 AUTO/MANUAL switch
To switch automatic operation to/from manual operation
9 SIO connector
To connect teaching pendant and the connecting cable for PC compatible software
10 System I/O connector
The connector for remote AUTO/MANU switch input and emergency stop input for the entire controller with functions including an external regeneration-resistance expansion terminal.
11 PIO connector/ field network connection connector (MSEP-C only)
The PIO specification - connects to a 68 -pin ribbon I/O cable.
The field network specification - connects to a field network type specified on the MSEP controller.
12 Standard I/Os (MSEP-LC only)
The MSEP-LC comes installed with a 40-pin PIO connector as standard equipment.
13 Expansion I/Os (MSEP-LC only)
Expansion I/Os can be installed as an option.
Available I/O types include PIO, DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, Ethernet/IP, EtherCAT and PROFINET-IO.
(*1) The shut-off feature is available on a single slot basis which is for two axes per slot. Please note that a single axis basis cannot be accommodated.

Input/Output (PIO) Signals

The MSEP-C has dedicated inputs and outputs set to PIO signals at 34 input points/34 output points. The axis operates when each signal is turned ON/OFF from the host PLC.
With the MSEP-LC, general-purpose input/output signals at 32 input points/32 output points can be used in a ladder program by using the standard 16 input points/16 output points plus expansion I/Os.

MSEP-C (PIO specification)

MSEP-LC (Expansion I/0 specification)

PIO Wiring Diagram for MSEP-C

Connector name: HIF6-68PA-1.27DS (Hirose Electric)					
Pin No.	Category	Signal ID	Pin No.	Category	Signal ID
A1	24 V	For I/O	A18		OUTO
A2		INO	A19	Output	OUT1
A3	Input	IN1	A20	(Axis No. 0)	OUT2
A4	(Axis No. O)	IN2	A21		OUT3
A5		IN3	A22		OUT4
A6		IN4	A23	Output	OUT5
A7	Input	IN5	A24	(Axis No. 1)	OUT6
A8	(Axis No. 1)	IN6	A25		OUT7
A9		IN7	A26		OUT8
A10		IN8	A27	Output	OUT9
A11	Input	IN9	A28	(Axis No. 2)	OUT10
A12	(Axis No. 2)	IN10	A29		OUT11
A13		IN11	A30		OUT12
A14		IN12	A31	Output	OUT13
A15	Input	IN13	A32	(Axis No. 3)	OUT14
A16	(Axis No. 3)	IN14	A33		OUT15
A17		IN15	A34	OV	For l/0

Connector name: HIF6-68PA-1.27DS (Hirose Electric)					
Pin No.	Category	Signal ID	Pin No.	Category	Signal ID
B1	24 V	For I/0	B18		OUT16
B2		IN16	B19	Output	OUT17
B3	Input	IN17	B20	(Axis No. 4)	OUT18
B4	(Axis No. 4)	IN18	B21		OUT19
B5		IN19	B22		OUT20
B6		IN20	B23	Output	OUT21
B7	Input	IN21	B24	(Axis No. 5)	OUT22
B8	(Axis No. 5)	IN22	B25		OUT23
B9		IN23	B26		OUT24
B10		IN24	B27	Output	OUT25
B11	Input	IN25	B28	(Axis No. 6)	OUT26
B12	(Axis No. 6)	IN26	B29		OUT27
B13		IN27	B30		OUT28
B14		IN28	B31	Output	OUT29
B15	Input	IN29	B32	(Axis No. 7)	OUT30
B16	(Axis No. 7)	IN30	B33		OUT31
B17		IN31	B34	OV	For I/O

PIO Wiring Diagram for MSEP-LC

Standard I/Os

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
B1	Output	Y000	B11	Output	YOOA
B2		Y001	B12		YOOB
B3		Y002	B13		YOOC
B4		Y003	B14		YOOD
B5		Y004	B15		YOOE
B6		Y005	B16		YOOF
B7		Y006	B17	-	Not used
B8		Y007	B18		Not used
B9		Y008	B19		OV external input
B10		Y009	B20		OV externar input

Expansion $1 / 0 \mathrm{~s}$

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
B1	Output	Y010	B11	Output	Y01A
B2		Y011	B12		Y01B
B3		Y012	B13		Y01C
B4		Y013	B14		Y01D
B5		Y014	B15		Y01E
B6		Y015	B16		Y01F
B7		Y016	B17	-	Not used
B8		Y017	B18		Not used
B9		Y018	B19		OV external input
B10		Y019	B20		OV externar input

Specifications
 Table of General Specifications

Specification item		Description							
Number of axes in the controller		8 axes max. (MSEP-C), 6 axes max. (MSEP-LC)							
Controller/ Motor input power		DC24V $\pm 10 \%$							
Brake power		0.15 A x Number of axes							
Current consumption by control power		0.8A							
Controller inrush current		5 A max., under 30 ms							
Motor consumption current		Servo motor type	Rated ampere	Maximum		Pulse motor type	Rated ampere	Maximum	
		Energy saver		Stand./Hi-accel.					
		2W	0.8A		4.6A	20P		1.0A	
			0.7 A		1.5 A	28P		1.0A	
		3W(RCD)	0.7A		1.5A	28SP		1.2A	
		5W	1.0A		6.4A	35P	7	2.0A (High-output	
		10W(RCL)	13 A		6.4 A	35 P		incompatible driver)	
		10W(RCA/RCA2)		2.5 A	4.4A	42P	2.2A (High-out-	2.2A (High-out-	
		20W	1.3 A	2.5 A	4.4A	42 P	put disabled)	put disabled)	
		20 W (20S type)	1.7A	3.4A	5.1A	56P	3.5A (High-out-	4.2A (High-out-	
		30W	1.3A	2.2A	4.4A	56 P	put enabled)	put enabled	
Motor inrush current			Slot numbers x 10A max., under 5ms						
Motor-encoder cable length		Maximum length 20m (Note: 10m maximum for simple absolut encoder specification)							
Serial communication (SIO port: dedicated teaching		RS485 1ch (Modbus protocol compatible) Speed 9.6 to 230.4kbps							
External interface	P10 specification	PIO specification : DC24 V dedicated signal in/output; Maximum input of 4 points/axis; Maximum output of 4 points/axis; Maximum cable length 10 m							
	Field network specification	DeviceNet, CC-Link, PROFIBUS-DP, PROFINET IO, CompoNet, EtherCAT, EtherNet/IP							
Data configuration and input method		PC software application, touch panel teaching pendant, gateway parameter configuration tool							
Data retention memory		Restore the position data and parameter in non-volatile memory (unlimited input)							
Positioning points		PIO specification: 2 or 3 points Field network specification: 256 points (no limited input for the simple numerical control and the direct numerical control) (Note) The number of designated positions vary depending on the parameter configuration with motion mode selection.							
LED display (On the front panel)		LED for driver status, 8 LEDs (for each driver board) Status LED, 4 LEDs (PIO specification), 7 LEDs (Fieldbus specification)							
Electromagnetic brake force release		Enable to force-release by transmitting a deactivation signal to each axis (DC24 V input)							
Surge protection		Overcurrent protection (A cut-off semiconductor circuit is built-in on each slot)							
Electric shock protection		Class I basic insulation							
Insulation resistance		DC500V $10 \mathrm{M} \Omega$							
Weight		$620 \mathrm{~g} / 690 \mathrm{~g}$ with the simple absolute encoder specification / 1950 g with the absolute data backup battery box (8-axis specification)							
Cooling method		Forced air cooling							
Ambient operating temperature/humidity		0 to $40^{\circ} \mathrm{C}$, under 85% RH (non-condensing)							
$\frac{\text { International Protection code }}{\text { PLC function (MSEP-LC) }}$		IP20							
		Dedicated ladder program (Program capacity: 4k steps)							

Dimensions

Exterior Dimensions

Controller (The same dimensions apply to the MSEP-C/LC)

(20.5

Absolute data backup battery box

Options

Teaching pendant

- Summary Teaching device for positioning input, test operation, and monitoring.

Specification

Rated voltage	24 V DC
Power consumption	3.6 W or less (150 mA or less)
Ambient operating temperature	$0 \sim 50^{\circ} \mathrm{C}$
Ambient operating humidity	$20 \sim 85 \%$ RH (non-condensing)
Environmental resistance	IP40 (initial state)
Weight	507 g (TB-01 unit only)

PC compatible software (Windows only) *For the MSEP field network specification, the PC compatible software is required.

External regeneration resistor

-Summary The regeneration resistor converts regenerated current dissipated during deceleration of the motor load into heat. The MSEP controller has an internal regeneration resistor for ordinary operations, however, depending on the operational condition, please install an external regeneration resistor if the internal regeneration resistor capacity is insufficient.

- Model RER-1

- Exterior dimensions

Absolute data backup battery box

- Summary If the absolute position encoder specification is selected with code ABB, the absolute data backup battery box is included with the controller. However, if the battery box is ordered as a separate unit, it does not include the battery but just the box itself. If the battery is needed, please purchase it separately. (Model: AB-7).
\| Model MSEP-ABB (Batteries not included)

| Exterior dimensions See P. 23

* A cable (Model CB-MSEP-AB005) that connects the absolute data backup battery box to the MSEP is included with the box.

Driver board

- Summary A supplement or modification to the driver board is feasible with the MSEP controller. When the actuator that control motions needs to be modified, just replacing the driver board would serve the purpose without changing the entire controller. (The parameters need to be adjusted when changing the driver board)
- Model

Motor type	High output type	Encoder type	Number of axes	Model
Pulse motor	High output setting enabled	Battery-less absolute/ incremental	1-axis	MSEP-PPD1-W
		Simple absolute	1-axis	MSEP-PPD1-A
	High output setting disabled	Battery-less absolute/ incremental	1-axis	MSEP-PD1-W
			2-axis	MSEP-PD2-W
		Simple absolute	1-axis	MSEP-PD1-A
			2-axis	MSEP-PD2-A
24VAC servo motor	-	Incremental	1-axis	MSEP-AD1-I
			2-axis	MSEP-AD2-I
		Simple absolute	1-axis	MSEP-AD1-A
			2-axis	MSEP-AD2-A
BLDC servo motor	-	Incremental	1-axis	MSEP-DD1-I
			2-axis	MSEP-DD2-I

Replacement battery
-Summary The replacement battery for the absolute data backup battery box.

IModel AB-7

Replacement fan unit
\|Model MSEP-FU

Service Parts_MSEP ${ }_{\text {series }}$

Service Parts

Service Parts

Model number	CB-CAN-MPA $\square \square \square$	Integrated Motor-Encoder Cable	for
	CB-CAN-MPA $\square \square \square$-RB	Integrated Motor-Encoder Robot Cable	RCP5/RCD \& RCP4(CR)-SA3/RA3

* Please indicate cable length (L) in $\square \square \square$, maximum 20m. e.g.) 080=8m

Model number	CB-CA-MPA $\square \square \square$	Integrated Motor-Encoder Cable	for
	CB-CA-MPA $\square \square \square$-RB	Integrated Motor-Encoder Robot Cable	RCP4

* Please indicate cable length (L) in $\square \square \square$, maximum 20m. e.g.) 080=8m

Pin No	Signal name		Pin No	Signal name
A1	øA/U		1	\varnothing A/U
B1	VMMN		2	VMMN
A2	ØAW		5	$\triangle A / W$
B2	¢B/-		3	¢B/-
A3	VMM/-		4	VMM/-
B3	С_B/-		6	Ø_B/-
A4	LS+/BK+		7	LS+/BK+
B4	LS-/BK-		8	LS-/BK-
A6	-/A+		11	-/A+
B6	-/A-	\bigcirc	12	-/A-
A7	A+/B+		13	A+/B+
B7	A-/B-		14	A-/B-
A8	B+/2+	-	15	B+/2+
B8	B-12-		16	B-/2-
A5	BK+/LS+	,	9	BK+/LS+
B5	BK-/LS-		10	BK-/LS-
A9	LS_GND		20	LS_GND
B9	VPS		18	VPS
A10	VCC		17	VCC
B10	GND		19	GND
A11	-	-	21	-
B11	FG		22	-
			23	-

Model
number

CB-APSEP-MPA CB-APSEP-MPA

* Please indicate cable length (L) in $\square \square \square$, maximum 20m. e.g.) $080=8 \mathrm{~m}$

25

MSEP Series V2b
 Catalogue No. 0914-E

 of product inprovement
IAI
 Quality and Innovation

IAI Industrieroboter GmbH

Ober der Röth 4
D-65824 Schwalbach / Frankfurt
Germany
Tel.:+49-6196-8895-0
Fax:+49-6196-8895-24
E-Mail: info@IAI-GmbH.de
Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.

2690 W. 237th Street, Torrance, CA 90505, U.S.A
Phone: +1-310-891-6015, Fax: +1-310-891-0815
IAI (Shanghai) Co., Ltd
Shanghai J iahua Business Centee A8-303.808,
Hongqiao Rd., Shanghai 200030, China
Phone: +86-21-6448-4753, Fax: +86-21-6448-3992

IAI CORPORATION

645-1 Shimizu Hirose, Shizuoka 424-0102, J apan
Phone: +81-543-64-5105, Fax: +81-543-64-5182
IAI Robot (Thailand) Co., Ltd
825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand Phone: +66-2-361-4457, Fax: +66-2-361-4456

[^0]: * Please refer to the controller operation instruction for the above signal information. (Download is available from our website)

